
PMIF+ to QNAP transformation (Acceleo)

1. Introduction
This document describes the first stage of a Model-to-Text (M2T) transformation that
generates QNAP models from PMIF+ models. This transformation is implemented using
Acceleo (http://www.eclipse.org/acceleo/) which is a code generator based on templates that
implements the OMG's Model-to-Text specification. Acceleo is fully integrated in the Eclipse’s
EMF framework.

2. Structure of the transformation
In this section, the structure of the Acceleo transformation is described at high level, in
pseudo-code. The fine detail of the transformation is explained in the section 2.

/* declarations */

for each server, forkjoin node and sourcenode
 declare a queue
end for

for each servicerequest that has a ForkNode as server
 declare a queue // the splitter
 for each forkworload in the forknode
 declare a queue //the router
 end for
end for

for each passive entity
 declare a queue
end for

for each workload
 declare a class
end for

for each servicerequestplus
 declare a queue // for passive non blocking services
 for each service
 declare an auxiliary class //for routing between the active and the passive

 // stations
 end for
end for

for each servicerequest, openworkload and closedworkload

 declare a real // used for sample generation, some may be actually unused
end for

for each passive entity
 if is syncpoint
 declare two flags
 declare a customer reference
 else if event
 declare a flag
 declare two customer references
 else if timer
 declare a timer
 end if
end for

if exists a syncpoint
 declare attribute CLLRTRN //call return reference
 declare attribute QUEUED //whether the customer is queued for an event or not
end if

 /* procedure declarations */

for each workload and servicerequest
 generateRoutingProcedure(...) // see detailed explanation below
endfor

/*station declarations */

for each passive entity
 generate_PassiveEntity_Station
end for

for each openworkload
 generate_Source_Station
end for

for each closedworkload
 generate_ThinkDevice_Station
end for

for each servicerequest
 if service request is ServiceRequestPlus
 if server is ForkJoin
 else

 else
 if server is ForkJoin
 else
 generateStation
 end if

 end if
end for

procedure generateRoutingProcedure (prefix: String, num: Integer, transits, workload)
 if mixed TransitPlus and Transit
 ERROR
 else
 if all transits are TransitPlus
 if mixed DepRoutingTypes
 ERROR
 else
 declare_routing_procedure
 end if
 else // all transits are Transit
 declare_routing_procedure
 end if
 end if
end procedure

3. PMIF+ elements transformation
In this section we describe the details of the transformation of each PMIF+ element (or group
of elements).

3.1. Workloads
For each workload (OpenWorkload, ClosedWorkload or ForkWorkload), a class, a queue and a
routing procedure are declarated. The queue represents the associated node of the workload
(a source for OpenWorkloads, a think device for ClosedWorkloads and a Fork node for
Forkworkloads. The Routing procedure is a procedure that determines where a customer has
to go after it has received service; this procedure is described in detail in section 2.3. In
addition, a call to the routing procedure is generated for each transitFirst. This is summarized
in Figure 1.

Figure 1 - Workload transformation.

3.2. Nodes
For each node, a queue is declared, as is shown in Figure 2. The specification of the
corresponding station is done when the ServiceRequest/Workload element is transformed.

Figure 2 – Node transformation

Workload

transitFirst

class declaration

node declaration

routing procedure

routing procedure
call

Node

queue declaration

3.3. Transit and TransitPlus
A procedure with the transit information is generated for each workload (openworkload,

closedworkload, forkworkload) and for each service request. This procedure's name follows
the pattern prefixTnum, where:

- T stands for Transit;

- prefix is '_OW' for openworkload, '_CW' for closedworkloads, '_FW' for forkWorkloads
and '_SR' for serviceRequests;

- num is the workload/servicerequest position in the sequence of
workloads/servicerequests.

This pattern makes easier to call the procedure later in the QNAP code. These calls are
generated for each transitFirst or transitNext. The generation of routing procedures and
routing procedure calls is depicted in Figure 3.

Figure 3 – Routing procedures and routing procedure calls

The transformation checks if the all the transits are of the same kind (TransitPlus or Transit); if
not, the transformation generates an error message in the generated QNAP file.

The transit information could be embedded in the 'service' section, but it would be
cumbersome. Furthermore, you can have local variables in a procedure so you avoid the
declaration of a large number of global variables.

The following list of variables is declared locally in each procedure:

- Integer N, M: auxiliary indexes.

- REF QUEUE station(size): references to the transit's destination station. If it's the 'OUT'
station, (QNAP complains when the reference is the 'OUT' station itself).

- REF CLASS workload(size): references to the transit's workload type which can be the
incoming workload or another one if the transit is a TransitPlus.

Workload /
ServiceRequest

transitFirst /
transitNext

routing procedure
declaration

routing procedure
call

- REAL value (size): values used for choosing the transition that actually happens. These values
depend on which type of depRouting the transit is:

 - for 'probabilities', value(i) is the probability (transit's 'Probability' attribute);

 - for 'shortestQueueLenght', value(i) is the target station (transit's 'To' attribute)
CUSTNB;

 - for 'shortestResponseTime', value(i) is the target station MRESPONSE;

 - for 'roundRobin', value(i) is unused;

 - for 'fastestService', value(i) is the target station MSERVICE;

 - for 'leastUtilization', value(i) is the target station MBUSYPCT.

If the transit is not a TransitPlus, value array will store probabilities.

The size of these arrays is equal to the cardinal of the Transit set. If there's only one transit, the
aforementioned variables aren't declared as arrays of size 1 but as simple variables (because
otherwise QNAP complains).

A global variable is also declared for each transit (INTEGER prefixRRX, where RR stands for
Round Robin, and prefix and X are the same as in the procedure declaration); this variable is a
counter used when depRoutingType is 'roundRobin'. If depRoutingType is 'probabilities', a
random number is generated with the DISCRETE command. This random number will be used
as the index for selecting the actual transit's target station and its workload. In the rest of the
cases, the index is chosen depending on the value

3.4. ServiceRequests
For each ServiceRequest, a QNAP station is specified. As seen previously, a routing procedure
and a several routing procedure calls are also generated (Figure 4).

Figure 4 – Transformation of Service Requests

ServiceRequest

transitNext

station
specification

routing procedure

routing procedure
call

3.4.1. ServiceRequestPlus
ServiceRequestPlus is a kind of ServiceRequest that can contain several Service elements. This
services can be active or passive, and the passive services can be blocking or non-blocking. In
order to develop a correct transformation, several approaches were studied. Figure 5
summarizes the transformation of a ServiceRequestPlus. In the next subsections, these
approaches are described as well as the problems that each of them arised.

Figure 5 – ServiceRequestPlus transfomation

3.4.1.1. First approach

The ServiceRequestPlus (SRP) to be transformed is composed by active and/or passive
services. For each SRP, a station is generated (figure 6); and for each service, the
corresponding QNAP commands are generated in the station’s SERVICE block.

[SR.server]

Figure 6 - Transformation of a SRP (one station for all the services)

Problem: QNAP gives an error ((0R040J) ==>ERROR (SIMUL) : NO SYNCHRONISATION ON

STATION WITH PS SCHEDULING) when a PS station is blocked (i.e. at a semaphore).

3.4.1.2. Second approach

A station is created for each SRP service (Figure 7). The first one receives the name of
the SRP’s server. The names of the remaining stations are automatically generated: _asXY for
active services and _psXY for passive services, with X being an integer corresponding to the

ServiceRequestPlus

service

station declaration

(passive node)

routing procedure

class declarations (if
needed) + routing

commands between the
active and the passive

position that the SRP in its ordered and Y being the number of the service. These name
patterns are due to QNAP restrictions (identifiers can be 8 characters long at the most).

[SR.server] _pX1 /
_aX1

_pXY /
_aXY...... ...

Figure 7 - Transformation of a SRP (one station for each service)

Passive stations have infinite servers and FIFO policy whereas Active stations are defined as
the service request indicates (scheduling policy and number of servers).

Problems: the model that this approach generates isn’t equivalent to the original model,
because when a SRP has multiple active services, there could be customers in every station
(_aXY) and this is not what is represented in the original model.

3.4.1.3. Third approach

We changed the PMIF+ model introducing several new stations (syncX) where the
blocking commands where performed. However, this change was dismissed because we were
adapting the PMIF+ model to a concrete tool (QNAP).

3.4.1.4. Fourth approach

In this approach (working with the original PMIF+ model, not the one of the previous
approach) an “entrance station” was introduced. This station receives the server workload's
name because this way is easier to route the incoming workload to this service request.
Besides this station, two new stations are created, one that processes the active services
(_asX) and one that processes the passive services (_psX), as is shown in Figure 8.

_aX
active

[SR.server]

_pX
passive

*

*

* & ** are mutually exclusive

**

**

...
...

Figure 8 - Transformation of a SRP (entrance station, active station and passive station)

The first station receives the original workload. Then the workload name changes in each step
of the route in order to prevent having the same station and workload combination repeated
multiple times because QNAP’s simulation would fail. The workload names follow the pattern
_wlXY, where X is the SRP number and Y is the service number.

Problems: the entrance station is unnecessary and complicates the resulting model. Moreover,
the results are hard to find, because the performance indexes of the active station are usually
the subject of interest but the may be lost/hidden between the results of several stations
named _asX. It would be preferable that the active stations could keep the SRP server name.

3.4.1.5. Fifth approach

In this approach, the entrance station is eliminated. Now the transformation only generates
two stations for each SRP, one for the active services (this one receives the name of the SRP
server and its scheduling policy and number of servers are defined as the SRP states) and one
for the passive services (this one named _psX with a FIFO scheduling policy and infinite
servers). The active station is always the one that receives the incoming workload. If the first
service is a passive service, the workload receives no service and it is routed to the passive
station (Figure 9). As in the previous approach, the workload name is changed in every
transition (_wlXY).

[SR.server]

_pX
passive

* mutually exclusive

*

*

Figure 9 - Transformation of a SRP (active station and passive station)

Problem: how to treat sequences of services in which after an active service there is a number
of passive services that block the server (it can be repeated any number of times, i.e.: active-
passive(blocks)-passive(blocks)-active-passive(blocks)-passive(blocks)) without letting other
customers take the server?

3.4.1.6. Sixth approach

To solve the problem found in the previous approach, the consecutive services that are either
active (though there can’t be two consecutive active services) or passive with the attribute
blocksServer true are grouped and performed in the active station whereas the passive
services (with blocksServer false) are performed one by one in the passive station. In other
words, the resulting structure of the transformation is the same as the previous approach but
the transits between the active station and the passive station are determined by the presence
of non-blocking passive services (Figure 10).

A PB PB A P A PB P

1: active station
2: passive station
→: transit

A: active service
PB: blocking passive service
P: non-blocking passive service

1 2 1 2

Sequence of services

Figure 10 - Grouping of services

3.5. ForkJoin
If a ServiceRequest’s server is a Forknode, the transformation generates:

- A "splitter" station. This is the station where the SPLIT command is performed. Its name
follows the pattern _sX, with X being the SR number.

- A "router" station for each kind of customer created with the SPLIT station. Without this
station the transformation would have to generate all the possible combinations of target
stations and number of customers. Its names follow the pattern _rXY, with X being the SR
number and Y being the transit number.

- A "fork" station. This station’s name is the SR server name. The aim of this station is to model
the exit of the Fork node.

Both _sX and _rXY stations have infinite servers and FIFO policy, whereas the “fork station” has
its characteristics defined as the SR indicates.

When the WillJoin attribute is true, no father customer is created, and a MATCH operation is
performed in the “fork station” (Figure 11). If WillJoin is false, the sons exit the system after its
itinerary has ended and the father is sent from the _sX station to the “fork station” (Figure 12).

_sX

_rXY

_rX1

_rX2
fork

station

...

...

...

.

.

.

Figure 11 - Transformation of a Fork (WillJoin = true)

_sX

_rXY

_rX1

_rX2

fork
station

...

...

...

.

.

.

OUT

Figure 12 - Transformation of a Fork (WillJoin = false)

The transformation currently disregards any service time related data present in the SR. It
would be easy to add this service time in case of Time Service Requests or Demand Service
Requests, though it should be decided whether the service time should be represented in the
splitter station or in the fork station. If the SR is a Service Request Plus, it would be harder
because to transformation because this structure (splitter-router-fork) should be combined
with the one shown in the previous section.

The use of automatically generated names is mandatory because there are more stations in
QNAP model than in nodes in the PMIF+ model) but it complicates the transitions between
nodes, because the transformation can’t assume that a transit will go to a station with the SRP
server name, as sometimes it will have to transit to a station with an automatically generated
name.

When the ‘to’ attribute of a Transit element (PMIF+ model) is a ForkNode, it can be either a
transit corresponding to a son customer returning to the fork station (for the MATCH
operation) or a transit corresponding to the entrance to a Fork structure. In the second case,
the transit in QNAP must send the customer to the appropriate _sX station (splitter).

As the forks can be nested, whether the workload is a forkworkload or not doesn’t determine
which case we are dealing with. In other words, if forks couldn’t be nested, if the workload
were a forkworkload it would mean that the customer comes from a fork so the
transformation would have to send it to the fork station. Since the aforementioned restriction
isn’t true, the customer could also be a customer that comes from a fork and that it’s entering
into a new fork.

The solution to this problem is to check if exists a SR with that node as server and that
workload. If it exists, the customer must be sent to a splitter, otherwise it must be sent to the
fork station.

3.6. Transformation of the Passive Entities and its related
commands

Most of the passive entities are represented by queues. Resources, Buffers, Memories,
Syncpoints and Tokens are associated to Semaphores whereas Mailboxes are associated to
Resources. Events and Timers are a little different: an event is represented by flags and a Timer
is represented by QNAP’s timer.

Some Passive Entities need auxiliary structures in order to be able to implement their
behavior: customer attributes and customer references are needed for Syncpoints and Events.

This is summarized in Figure 13. In the next subsections, the details of the implementation of
each Passive Entity and its related commands are explained.

Figure 13 – Transformation of Passive Entities

3.6.1. Resource – Allocate / Deallocate

A resource is represented by a QNAP semaphore, its capacity is determined by the
initAvailable attribute (TYPE = SEMAPHORE, MULTIPLE (initAvailable)). The allocation and
deallocation of resource units is performed by PMUL and VMUL commands, respectively.

3.6.2. Mailbox – Send / Receive

A mailbox is represented by a QNAP resource. The allocation and deallocation of the mailbox is
performed by P and V commands, respectively. CATI: Això hauria de ser “send” and “receive” i
“send” hauria de ser la V I receive la P. Això crec q esta be a la transformació

3.6.3. Event – Wait / Queue / Set / Clear

In order to represent an Event and its operations in QNAP, a Flag (FlgEvX, where X is the
number of the event), two Customer references (CX and CqX) and a Boolean Customer
attribute (queued) are declared for each event. A customer can either wait or queue for an
event. If it waits, the queued attribute is set to FALSE whereas if it queues, the queued
attribute is set to TRUE, as is shown in figure 14. In both cases, the customer performs a QNAP
Wait operation on the flag.

PassiveEntity

syncpoint

queue declaration

flag declaration
(x2)

customer reference
declaration

event

flag declaration

customer reference
declaration (x2)

customer attributes
declaration

When an event is Set there are two cases: the first case is that there are no customers waiting
or queued for the event, the second case is that there are customers waiting or queued. In the
first case, the event is set by performing the QNAP Set operation (SET(FlgEvX)). In the second
one, the list of waiting and queued customers (FlgEvX.LIST) is traversed using the CX customer
reference: all the waiting customers are freed by performing the QNAP FREE operation
whereas only the first queued customer is freed. The customer reference CqX is used to
distinguish the first queued customer from the rest.

When an event is cleared, a QNAP RESET command is performed.

FlgEvX * *** ** * * * ** ** * *

*: queued = FALSE
**: queued = TRUE

LIST

Figure 14 – Event flag and its waiting and queued customers

3.6.4. Timer – Start / Stop

The PMIF+ Timer element is transformed to a QNAP Timer. The operations Start and Stop have
been implemented with the commands SETTIMER:ABSOLUTE(timer, 0.0) and
SETTIMER:CANCEL(timer), respectively.

3.6.5. Buffer – Get / Put / Create / Destroy

A buffer is represented by a QNAP semaphore, its capacity is determined by the initAvailable
attribute (TYPE = SEMAPHORE, MULTIPLE (initAvailable)). The get and destroy operations are
performed by a PMUL command whereas the put and create operations are performed by a
VMUL command.

3.6.6. Memory – Allocate / Deallocate / Add

A memory is represented by a QNAP semaphore, its capacity is determined by the initAvailable
attribute (TYPE = SEMAPHORE, MULTIPLE (initAvailable)). The allocation of memory units is
performed by a PMUL command whereas the deallocation and the addition of memory units
are performed by VMUL commands.

3.6.7. Syncpoint – CallReturn / Accept / Return

Figure 15 represents the flow of customers when there is a callreturn command. The
workload1 customer waits the node “callreturn” until the workload2 customer performs a
return. This customer is previously waiting in the node accept until the workload1 customer
performs the callreturn command.

callreturn

accept return... ...

... ...
workload1

workload2

Figure 15 - Syncpoint

The three commands (callreturn, accept, return) where implemented by two flags (flagAccept,
flagReturn) that initially would be unset. In addition, a semaphore has to be declared in order
to assure that the first customer can perform the callreturn operation.

The implementation, summarized in Figure 16.

a) callreturn:

1 - when a customer (WRKLD1 class) arrives to the callreturn node, it waits for the semphore
SEM1;

2 - when the semaphore SEM1 is released (V), the reference of the first customer (WRKLD2
class) in accept node (they are blocked because they are waiting for FLAG_ACCEPT) is fetched
and saved in the attribute cllrtrn;

3 - the first customer waiting in accept node is unblocked (FREE command);

4 - the WRKLD1 customer gets blocked waiting for flag FLAG_CALLRETURN.

b) accept:

1 - when a customer (WRKLD2 class) arrives to the accept node, it releases the semaphore
SEM1;

2 - the customer waits gets blocked waiting for flag FLAG_ACCEPT

c) return:

1 - when a customer (WRKLD2 class) arrives to the return node, the customer referenced in its
cllrtrn attribute is unblocked (it's waiting for flag FLAG_ACCEPT).

callreturn

accept return... ...

... ...
WRKLD1

WRKLD2

SEM1

P

V

Signal

Customer transit

WAIT

FREE

WAIT

FREE

FLAG_ACCEPT

FLAG_CALLRETURN

Figure 16 - Callreturn, Call and Return implementation

3.6.8. Token – Request / Release / Create / Destroy

A token is represented by a semaphore. If the initAvailable attribute is 1, a V operation is
performed on the semaphore at the beginning of the simulation in order to make available the
token. Otherwise, the token needs to be created before it can be requested. The creation of a
token (Create command) is performed by a V operation and its destruction (Destroy

command) is done by means of a P operation. Likewise, Request command is implemented by
a P operation whereas the Release command is implemented by a V operation.

4. Assumptions and restrictions
In this section, the list of assumptions? and restrictions the transformation is based on is given
(refer la frase).

 OpenWorkload:

- arrivalRate and arrivalDistribution are incompatible.

- (1/arrivalRate) is the parameter of an exponential distribution.

 ClosedWorkload:

- thinkTime and thinkTimeDistribution are incompatible.

- thinkTime is the parameter of an exponential distribution.

 ActiveService:

-serviceTime and serviceTimeDistribution are incompatible.

- serviceTime is the parameter of an exponential distribution.

 Distributions:

- Exponential, Hyperexponential, Uniform, Erlang and Constant distributions can be used
directly in QNAP's Service command. Normal and 'other' distributions need a variable to
generate the service time and then it's set as a constant service time (CST).

 Service:

- sequenceNumbers can be non-consecutive. This doesn't change the result of the
ordering.

- Services without sequenceNumber are executed after services with sequenceNumber.

 Wait (command):

- If there are several clients waiting for an event or a buffer, the chosen client will be the
one with highest priority whereas if all the clients have the same priority, the client will be
chosen following the FCFS rule.

 PassiveEntity:

- initAvailable is the number of free elements in the buffer/resource/message at the start
of the simulation.

- quantity is the number of units to get/put allocate/deallocate.

 ForkJoin nodes:

- When willJoin attribute is true, two stations are created in order to avoid a
TRANSIT/SPLIT incompatibility. Thus, the first station acts as a 'splitter' station and the
MATCH command is performed in the second station where the TRANSIT command routes
the customers to the next station. Without the 'splitter' station all the commands (SPLIT,
MATCH and TRANSIT) would be performed in the same station and QNAP would ignore the
SPLIT because of the presence of the TRANSIT command.

- When willJoin attribute is true, the SPLIT operation doesn't create a customer that
represents the 'father' of the fork, because it's not needed (it would just wait in the
MATCH station).

- When willJoin attribute is true, the sons created by the SPLIT operation cannot change its
workload class, i.e. there can't be a TransitPlus with a newWorkload atribute in the son's
route.

- The fork operation can be specified by any kind of ServiceRequest (ServiceRequestPlus,
TimeServiceRequest, DemandServiceRequest, WorkUnitServiceRequest) but the service
time/demand time/ passive and active services are disregarded (at least for now).

-There can be nested forks. To differentiate whether a son goes back to the station where
the MATCH is performed or whether it goes to a new 'splitter' station (for a new fork), we
look for the existence of a ServiceRequest for the Fork Join node and the son's workload
class.

 ForkWorkload:

- If there are several Transit for a given ForkWorkload and its quantity attribute has a
value greater than 1, a potentially large number of destination combinations should be
generated by the Acceleo template, along with the probability of each specific
combination, which is a complex task. To solve this problem in a simpler fashion, a new
station is created and each customer generated by the fork operation (determined by the
quantity attribute) is send to this station and then it is routed to the next station applying
the Transit information found in the ForkWorkload.

 ServiceRequestPlus:

- Two stations are created, one for Active Services and the other for Passive Services. The
reason for these two stations is a QNAP limitation regarding blocking operations when the
scheduling policy is PS.

- There can't be two consecutive Active Services (it makes no sense), at least a Passive
Service must be in between.

 Transits:

All the transits in a TransitNext or TransitFirst are of the same type, there can't be Transit
and TransitPlus mixed. In case of TransitPlus, all the depRouting attributes must obviously
have the same value.

 General:

If there are attributes in the source element that are not needed to generate the target
element (i.e. a quantity attribute when a Passive Service's command is callreturn), these
attributes are disregarded.

5. To-do
 Find out how to represent FCFSRS and FCFSR in QNAP.

 Define how Timer and Mailboxes work. The mailboxes’ messages haven’t been
implemented yet.

 Transform PMIF+ experiments.

